Effects of three non-confrontational handling techniques on the behavior of horses during a simulated mildly aversive veterinary procedure

Jacqueline C. Watson, Sue M. McDonnell

Havemeyer Equine Behavior Lab, Section of Reproduction and Behavior, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, 382 West Street Road Kennett Square, Pennsylvania 19348, United States

1. Introduction

When restrained for veterinary examinations and mildly aversive routine or emergency health care procedures, equine patients often exhibit behaviors indicating mild to moderate fear- and/or physical discomfort-related stress, including defecation, vocalizing to other horses, escape or avoidance movements, or general anxious behaviors such as pawing, stamping, tail and head movements. These behaviors not only interrupt and prolong the procedure, but some may also increase risk of injury to the patient and handlers. The traditional horse handling intervention in such situations typically includes increasing the level of physical restraint and/or attempting to verbally or even physically reprimand the patient. These interventions in most instances amount to positive punishment that is not only ineffectual at calming a patient, but can escalate dangerous avoidance/escape behaviors (McGreevy and McLean, 2009; Mills, 1998). Additionally, whether or not effective, traditional intense restraint and/or punishment of fearful or physically uncomfortable animals is no longer considered humane, and so particularly inappropriate for use in a veterinary care setting (AVSAB, 2010). While veterinarians have the option for use of sedative agents, there are circumstances where sedation may be contra-indicated.

One of the long-term goals of our veterinary school equine behavior program is to develop evidence-based recommendations for non-confrontational handling interventions for improving comfort and compliance of horses during mildly aversive health care or management procedures. For example, our clinic has introduced the use of food treats, which, in many instances, appear to effectively distract nervous patients, and when appropriately applied in a behavior modification strategy, reward the patient’s relaxation and tolerance. In instances where feeding is not convenient, allowed, or effective, it would be useful to have alternative positive options. Potential additional positive interventions include certain types of tactile stimulation, anecdotally believed to distract or comfort horses. One common tactile technique is

ARTICLE INFO

Keywords: Horse Veterinary procedure Low-stress Handling Non-confrontational

ABSTRACT

In a randomized between-subjects design, we evaluated the effectiveness of each of three non-confrontational handling interventions compared to no intervention control on the behavior of horses during a single-trial simulated mildly aversive health care scenario. These handling interventions included withers scratching (WITHERS, n = 12), face and eye rubbing (EYES, n = 12), and feeding (FEED, n = 12) for comparison with no intervention control (CON, n = 12). The simulated health care scenario included confinement in a novel clinical environment away from pasture mates, along with a 3-min exposure to a mildly aversive auditory stimulus (electric sheep shears hand held at a standard 3 m from the horse, 85 dB at ear level of horse). Sessions were video recorded for subsequent detailed quantitative evaluation of avoidance/ stress behavior responses during the 3-min auditory stimulus. Additionally, heart rate was telemetrically recorded at 5-s intervals during the 3-min auditory stimulus. Mean (± SE) avoidance/stress response frequency was 13.7 (3.2) for FEED, 26.9 (2.7) for EYES, 30.4 (5.2) for WITHERS, and 44.2 (5.3) for CON. FEED, EYES and WITHERS each differed significantly from CON (P < 0.05). Mean (± SE) average and ending heart rates, respectively, were: 75.3 (6.8) and 68.8 (5.7) for EYES, 73.5 (4.5) and 71.5 (5.9) for FEED, 84.7 (9.2) and 80.3 (10.2) for CON, 92.5 (8.1) and 80.8 (10.1) for WITHERS. For both average and ending heart rate, differences from control were not significant. We conclude that compared to no intervention, each of the three handling interventions was effective in reducing avoidance/stress responses compared in this model. These results provide evidence for recommending non-confrontational handling techniques to increase the comfort of horses, as well as improve safety for horses and handlers, during mildly aversive health care procedures.
scratching at the withers, or at other preferred mutual grooming sites of horses (chest, neck, or rump). Tactile stimulation in the form of scratching or massage at the withers has been shown to reduce heart rate (Feh and Mazières, 1993; Normando et al., 2003; McBride et al., 2004). Another technique involves rubbing of the face, particularly around the eyes and forehead, in a manner meant to be distracting and/or soothing. Neither of these tactile stimulation techniques, nor administration of food treats have been critically evaluated in a veterinary restraint and procedure situation.

The general design of the work reported here included a randomized between-subjects comparison of the effect of each of three positive handling interventions (feeding, scratching withers, rubbing eyes) and control (handler standing calmly at shoulder without interacting with the horse) on the number of avoidance/stress responses as well as average and ending heart rates during exposure to a standard mildly aversive auditory stimulus in a simulated veterinary care scenario. Our hypothesis was that each of the three interventions would result in fewer avoidance/stress behavior responses and lower heart rate measures compared to control.

2. Methods

2.1. Subjects

Forty-eight horses (29 mares, 1 gelding of various breeds) and ponies (13 mares, 5 geldings of various breeds and sizes), ranging in age from 2 to 23 years, served as subjects. These animals had been resident for variable durations, from less than one month to as long as several years, at the University of Pennsylvania School of Veterinary Medicine, New Bolton Center, for teaching and research purposes. The horses and one pony had been acquired as donations to the University for use as veterinary school teaching animals or as embryo transfer recipients. The remaining ponies had been resident since birth. All were kept in pasture herds with free-access to water, and natural forage and/or hay provided as needed. All animal procedures were approved by the University of Pennsylvania Institutional Animal Care and Use Committee, following federal animal care and use guidelines.

2.2. Simulated veterinary procedure

Personnel included one technician (JCW) who did all of the animal handling and one assistant (SMM) who operated the video recording and auditory stimulus devices. Each subject was hand-led individually by the technician from its pasture enclosure to a clinical or examination room or area. An elastic girth band with heart rate monitor (Polar™ Equine Heart Rate Monitor with ProTrainer 5™ Equine Software, Polar Electro Oy, Kempele, Finland) was snugly fitted just caudal to the withers. Electrode gel (Spectra™ 360 Electrogel, Parker Laboratories, Inc., Fairfield, New Jersey, USA) was liberally applied to the hair coat under each of the two heart rate sensors. In some instances of heavy winter hair coat, water was applied before the gel in order to establish adequate conductivity. Depending upon the animal’s experience and comfort with examination, it was then either placed in an examination stocks (n = 40), tethered (n = 4), or hand-held using the lead as a sliding tether (n = 4). These restraint conditions were balanced across intervention assignments. Immediately thereafter, the subject was exposed for a period of 3 min to a novel loud sharp sounding (85 dB at ear level of the horse) electric sheep shears (Sunbeam® Stewart Clipmaster®, Model 510A Head, Sunbeam Corporation Chicago, Illinois, USA) hand-held at a standard location at a distance of 3 m from the horse’s head. This auditory stimulus was chosen because it was novel, mildly noxious, and could be presented in a controlled and consistent manner to all subjects. In preliminary trials, exposure of several other horses and ponies to this scenario resulted in behavior reaction and heart rate increase similar to that seen with mildly aversive healthcare procedures.

2.3. Handling interventions

Each of the 48 subjects was assigned to one of four handling interventions (illustrated in Fig. 1), which included withers scratching (WITHERS, n = 12), face and eye rubbing (EYES, n = 12), feeding (FEED, n = 12), and no intervention control (CON, n = 12). The animal
work was done in a series of occasions over a period of four months. On each occasion, the subjects to be evaluated that day were each randomly assigned to one of the four groups, balancing across for order of evaluation, horses and ponies, mares and geldings.

During the 3-min auditory stimulus, the technician stood at the head or shoulder area of the animal holding the lead shank in one hand while performing the assigned intervention with the other. The auditory stimulus and the intervention started simultaneously.

For EYES, the technician stood quietly at the subject’s shoulder, while using the finger nails of one hand to firmly scratch at the withers at a rate of approximately one 10-centimeter dorso-ventral stroke per second, attempting to simulate the rhythm and intensity of mutual grooming among herd mates (McDonnell, 2003).

For FEED, the technician stood at the head of the subject slightly to one side while feeding a palatable pelleted complete feed (Purina® Equine Senior®, Land O’ Lakes Inc., Arden Hills, MN, USA) from a small rubber feed pan held with both hands, except when using one hand to replenish grain from a nearby source container.

For CON, the technician simply stood at the shoulder/ head area of the subject with no intentional interaction with the subject.

2.4. Heart rate measures

Heart rate estimates (beats per minute, bpm) included (1) average heart rate over the 3-min auditory stimulus (using 5 s interval averages obtained using the Polar ProTrainer 5® Equine Software) as well as (2) ending heart rate (first 5 s reading after cessation of auditory stimulus).

2.5. Subjective assessments at the time of each session

At the completion of each subject’s session, the technician and assistant each independently assessed the subject using a numeric scale for relaxation (1 = relaxed versus 5 = tense, with 0.5 increments) and for movement (1 = standing still versus 5 = moving, with 0.5 increments). These impressions based on direct observations while handling or assisting were compared with similar subjective ratings subsequently derived from video recordings of the sessions. The purpose of these comparisons was to assess whether the handler and/or observer could appreciate in the moment whether or not the intervention was effective.

2.6. Behavior measures derived from video recordings

Video recordings were viewed at real time by the technician, for as many repetitions as necessary to obtain the following measures. In preliminary trials this technician’s intra-rater reliability for these measures exceeded our laboratory standard of ρ or rho > 0.85.

2.6.1. Avoidance stress response frequency

Total number of avoidance/ stress responses occurring during the 3-min auditory stimulus. Responses included head movements (toss, shake, pull away, nod, turn to either side or back), body movements (move forward, move backward, attempts to rear, buck, or turn around), lip licking/ chewing (other than FEED), snorting, defecation, tail movements (slap against perineum, swish side-to-side), stomping or kicking, pawing, vocalizing (whiny), whole-body freezng (McDonnell, 2003; Young et al., 2012).

2.6.2. Relaxation rating

Subjective numeric rating scale, 1 to 5 with 0.5 increments, with 1 = relaxed versus 5 = tense (rigid posture, tense muscles, tense facial muscles expression).

2.6.3. Movement rating

Subjective numeric rating scale, 1–5 with 0.5 increments, with 1 = standing still versus 5 = moving (anxious fidgeting, problematic avoidance or escape movements).

2.7. Statistical analysis

Statistix 10 statistical software (Analytical Software, Tallahassee, Florida, USA) was used. For total avoidance/ stress response frequencies, as well as for average and ending heart rates, one-way ANOVA with Dunnet’s 2-sided multiple comparison procedures were used to evaluate differences between each intervention and CON. Homogeneity of variance was evaluated using Brown and Forsythe test procedures. Welch’s Test for Mean Differences was applied when homogeneity of variance was suspected (for average and ending heart rates). Results are presented as mean ± / SE. For relaxation and movement rating scores from video evaluation, Kruskal-Wallis procedures were used to compare each of the handling intervention groups with control. A probability of less than 0.05 (P < 0.05) was considered significant. Spearman rank order correlation procedures were used to evaluate association of the technician’s and the assistant’s ratings scored immediately following each session, as well as to evaluate the association of the technician’s ratings scored immediately following each session with those scored during the subsequent quantitative evaluation from the video recorded session. Results are presented as median.

3. Results

3.1. Avoidance stress response frequency

Mean (± / SE) avoidance/stress response frequency was 13.7 (3.2) for FEED, 26.9 (2.7) for EYES, 30.4 (5.2) for WITHERS, and 44.2 (5.3) for CON. Each of the three interventions differed significantly from CON (1-way ANOVA, F2,24 = 8.72, p < 0.0001, Dunnett’s 2-sided follow-up multiple comparisons with CON, P < 0.01 for FEED and for EYES, P < 0.05 for WITHERS).

3.2. Heart rate measures

Mean (± / SE) average and ending heart rates, respectively, were 73.7 (4.8) and 68.8 (5.7) for WITHERS, 75.3 (5.4) and 71.7 (5.9) for FEED, 84.7 (9.2) and 80.3 (10.2) for CON, and 92.5 (8.1) and 80.8 (10.1) for EYES. Differences among groups were not significant (P > 0.10 for each).

3.3. Relaxation and movement ratings

Median relaxation and movement rating scores obtained from the video evaluation were 3.0 and 2.25 for FEED, 3.0 and 3.0 for WITHERS, 1.75 and 1.75 for FEED, and 4.0 and 3.5 for CON. For both ratings, EYES and FEED differed significantly from CON (Kruskal-Wallis = 7.71 and 9.95, df 2, P < 0.05). Median relaxation and movement rating scores recorded by the technician immediately following each session were 4.0 and 3.5 for EYES, 2.5 and 2.25 for WITHERS, 1.75 and 1.75 for FEED, and 3.75 and 3 for CON. For relaxation, FEED differed significantly from CON (Kruskal-Wallis = 12.03, df 2, P < 0.05). Values were correlated with the corresponding rating scores obtained during subsequent video evaluation, both for relaxation (rho = 0.85, p < 0.001) and for movement (rho = 0.73, P < 0.001).
Median relaxation and movement rating scores recorded by the assistant immediately following each session were 2.5 and 2.0 for EYES, 2.0 and 1.75 for WITHERS, 1.25 and 1.0 for FEED, and 3.75 and 2.75 for CON. CON differed significantly from CON (Kruskal-Wallis = 14.54 and 12.86, DF = 22, P < 0.01). The assistant’s and the technician’s ratings recorded immediately following the sessions were positively correlated, both for relaxation (r = 0.80, P < 0.001) and for movement (r = 0.74, P < 0.001).

4. Discussion

In this model veterinary care scenario, each of three simple handling interventions resulted in fewer avoidance/stress responses. Feeding resulted in the lowest mean avoidance/stress response frequency, followed by eye rubbing and withers scratching. Unexpectedly, in spite of these lower avoidance/stress response frequencies, none of the three interventions resulted in significantly lower average or ending heart rates than control. Heart rates at the start of recording were higher than expected, likely in response to entering the novel clinical area, application of the heart rate monitor girth, and confinement in stocks or cross-ties immediately before the start of heart rate recording. Variation in heart rates among subjects was also greater than expected based on preliminary trials. With this variation, and only 12 subjects per group, statistical power was insufficient to detect a mild effect of the intervention compared to control. With these observations in mind, it may be useful for horse caretakers to acclimate their horses to these and other positive handling interventions, and to evaluate relative effectiveness. Further work is planned to evaluate these and other techniques within individual horses for various specific types of procedures, and to evaluate the benefit of acclimating individuals to each of the interventions to establish in advance which may appear most effective for the individual and the particular procedure.

Unfortunately, a common handling intervention with horses, both for routine care as well as veterinary care scenarios, involves application of restraint and/or verbal or physical reprimand. In rare instances severe restraint or punishment may be perceived as effective in the moment, but often heighten fear that can easily reach the level of “rigid freeze” or imminent “explosive escape” (Foster, 2017; McDonnell, 2017; McGreavy and McLean, 2009). For obvious humane ethical and safety reasons, our design did not include comparison with those confrontational/punitive strategies. For similar reasons, our design did not include comparison with negative reinforcement or overshadowing strategies (Foster, 2017).

In conclusion, these results provide evidence supporting recommendation of feeding, eye rubbing, and withers scratching for increasing comfort and compliance of horses during mildly aversive health care procedures. Feeding consistently resulted in fewer problematic avoidance/stress responses, and was consistently recognized by the technician and the assistance as an effective distractor. Whenever possible, it would be recommended to offer food during mildly aversive procedures. Further work should be done to evaluate additional non-confrontational handling options.

Conflict of interest

The authors of this research declare no conflicts of interest, financial or otherwise.

Acknowledgements

This is a Dorothy Russell Havemeyer Project conducted at the Georgia and Philip Holmman Center for Reproductive Studies at the University of Pennsylvania, School of Veterinary Medicine.

References

