Penn Vet | News Story detail
Contact
New Bolton Center Kennett Square, PA
Emergencies & Appointments:
610-444-5800
Directions
Ryan Hospital Philadelphia, PA
Emergencies:
215-746-8911
Appointments:
215-746-8387
Directions

 

 

Turning back the clock on a severe vision disorder

By: Katherine Unger Baillie | Kbaillie@Upenn.Edu | 215-898-9194 Date: Mar 31, 2021
Aguirre-Beltran-header
A mutation in the NPHP5 gene leads to a severe blinding disorder, Leber congenital amaurosis. Dogs with the condition that were treated with a gene therapy regrew normal, functional cone cells, labeled in red, that had previously failed to develop.
The treatment led to a recovery of retinal function and vision.

Gustavo Aguirre and William Beltran, veterinary ophthalmologists and vision scientists at the University of Pennsylvania School of Veterinary Medicine, have studied a wide range of different retinal blinding disorders. But the one caused by mutations in the NPHP5 gene, leading to a form of Leber congenital amaurosis (LCA), is one of the most severe.

Dr. Gustavo Aguirre, Penn Vet
Dr. Gustavo Aguirre

“Children with this disorder are not visual,” says Aguirre. “They have a wandering, searching look on their faces and are usually diagnosed at a young age.”

A nearly identical disease naturally occurs in dogs. In a new paper in the journal Molecular Therapy, Aguirre, Beltran, and colleagues at Penn and other institutions have demonstrated that a canine gene therapy can restore both normal structure and function to the retina’s cone photoreceptor cells, which, in LCA patients, otherwise fail to develop normally. Delivering a normal copy of either the canine or human version of the NPHP5 gene restored vision in treated dogs.

“What’s amazing is that you can take this disease in which cone cells have incompletely formed, and the therapy restores their function—they had no function whatsoever before—and recover their structure,” says Aguirre.

Dr. William Beltran, Penn Vet
Dr. William Beltran

“That plasticity is incredible and gives us a lot of hope,” Beltran says.

LCA includes a wide range of inherited vision disorders characterized by blindness that strike in early childhood. The form of LCA associated with NPHP5 mutations is rare, affecting about 5,000 people worldwide. Known as a ciliopathy, it affects the cilia of cells of the retina. The cilia cells are antennalike structures on photoreceptor cells that translate the energy from light into visual signals.

In the NPHP5 disease, rod photoreceptor cells—those responsible for vision in low light—degenerate and progressively die early in the disease. Yet the cone photoreceptors, which enable color vision and, in the central retina, the perception of fine detail, while abnormal structurally, survive, albeit without function.

Aguirre and Beltran, together with colleagues and coauthors on the current work, Artur Cideciyan and Samuel Jacobson in Penn’s Perelman School of Medicine, have found success with gene therapy approaches to treating a variety of inherited vision disorders. Often, they have aimed to treat early in the course of a retinal disease, before photoreceptor cells have died or entirely degenerated. But the fact that cone cells persisted in this form of LCA led the researchers to consider whether a therapy that targeted cones could not just stop but reverse the course of the disease.

Testing this approach, the team delivered retinal injections of adeno-associated viral vectors, a platform for ferrying the normal version of the NPHP5 gene, into one eye of each of nine five-week-old dogs with the vision disorder. Known as gene augmentation therapy, the injection is used to supply a healthy gene in disorders where the causative mutation leads to a defective or absent protein.

To determine the effectiveness of the treatment, the researchers used a technique called electroretinography, which measures the electrical response of photoreceptor cells to a light stimulus, as well as optical coherence tomography, which allows for the noninvasive imaging of fine cross sections of the retina. Both means of evaluating the experimental therapy rendered encouraging results. In the dogs’ treated eyes, the outer segment of the cones regrew.

aguirre-beltran-group
William Beltran (far left) and Gustavo Aguirre (second from right) of the School of Veterinary Medicine led the work,
collaborating with Artur Cideciyan and Samuel Jacobson of the Perelman School of Medicine. (Pre-pandemic image)

In addition, when the treated dogs were about six months old, their vision was tested using an obstacle-avoidance course. When their treated eye was blindfolded, they had difficulty at navigating; however, when that eye was uncovered, their ability to avoid obstacles was notably improved.

“What’s so appealing and so exciting here is that we’re not just stopping a disease process, we’re actually reverting a photoreceptor cell that is abnormal to become normal and function,” says Beltran. “This disease in dogs very closely parallels the disease in humans, in quite specific terms, so there’s a lot of support for the thought that a similar treatment approach could also help children.”

Ongoing studies suggest that the treatment may be effective even when delivered at later stages of disease. With further support, the researchers hope to move the research along the path to a clinical trial in people.

Gustavo D. Aguirre is professor of medical genetics and ophthalmology in the Department of Clinical Sciences and Advanced Medicine at the University of Pennsylvania School of Veterinary Medicine.

William Beltran is professor of ophthalmology in the Department of Clinical Sciences and Advanced Medicine and director of the Division of Experimental Retinal Therapies at Penn’s School of Veterinary Medicine.

Artur V. Cideciyan is a research professor of ophthalmology at the Scheie Eye Institute in the University of Pennsylvania's Perelman School of Medicine.

Samuel G. Jacobson is a professor of ophthalmology at the Scheie Eye Institute in Penn’s Perelman School of Medicine.

In addition to Aguirre, Beltran, Cideciyan, and Jacobson, coauthors on the study were Penn Vet’s Valérie L. Dufour, Ana Ripolles-García, Raghavi Sudharsan, Roman Nikonov, and Simone Iwabe; Penn Medicine’s Malgorzata Swider; and the University of Florida’s Sanford L. Boye and William W. Hauswirth.

The study was supported in part by the National Eye Institute (grants EY006855, EY017549, and EY001583) with additional support from the Foundation Fighting Blindness, the Van Sloun Fund for Canine Genetic Research, Hope for Vision, the Research to Prevent Blindness Foundation, and the Sanford and Susan Greenberg End Blindness Outstanding Achievement Prize.


About Penn Vet

Ranked among the top ten veterinary schools worldwide, the University of Pennsylvania School of Veterinary Medicine (Penn Vet) is a global leader in veterinary education, research, and clinical care. Founded in 1884, Penn Vet is the first veterinary school developed in association with a medical school. The school is a proud member of the One Health initiative, linking human, animal, and environmental health.

Penn Vet serves a diverse population of animals at its two campuses, which include extensive diagnostic and research laboratories. Ryan Hospital in Philadelphia provides care for dogs, cats, and other domestic/companion animals, handling more than 34,600 patient visits a year. New Bolton Center, Penn Vet’s large-animal hospital on nearly 700 acres in rural Kennett Square, PA, cares for horses and livestock/farm animals. The hospital handles more than 6,200 patient visits a year, while our Field Services have gone out on more than 5,500 farm service calls, treating some 18,700 patients at local farms. In addition, New Bolton Center’s campus includes a swine center, working dairy, and poultry unit that provide valuable research for the agriculture industry.