Thoracic Trauma: Causes and Triage in Horses

Sam Hurcombe
BSc BVMS MS DACVIM DACVECC
Associate Professor LA Emergency & Critical Care

Overview
- Causes of thoracic trauma:
 - Diaphragmatic hernia
 - Rib Fractures
 - Penetrating injuries
 - Pneumothorax/Pneumomediastinum
 - Re-expansion pulmonary edema
- General emergency management considerations

Initial Evaluation
- Watch – breathing
 - Rate, depth, synchrony, chest wall motion
- Penetrating wounds?
- Signs of other body system involvement
 - Mentation, colic, heart rate/rhythm

Diaphragmatic Hernia
- Clinical signs can vary
 - Colic is common
 - Rectal exam may feel "empty"
 - Dyspnea with paradoxical breathing patterns
 - Small rents may cause more severe colic signs due to strangulating of bowel
 - Imaging can be useful
 - Ultrasound and radiography
 - Exploratory celiotomy

Diaphragmatic Hernia
- Congenital
 - Morgagni (retrosternal) - ventral usually
 - Septum transversum fusion failure
 - Smooth edges, +/- hernial sac
- Acquired
 - Sudden increase in thoracic or abdominal pressure
 - Trauma
 - Parturition
 - Central diaphragm → weakness at musculotendinous junction?
 - Fresh edges, damaged fibers, acute inflammation
Diaphragmatic hernia in horses: 44 cases (1986–2006)

<table>
<thead>
<tr>
<th>Trait</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>23 (52%)</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>21 (48%)</td>
</tr>
<tr>
<td>Side</td>
<td>Right</td>
<td>24 (54%)</td>
</tr>
<tr>
<td>Side</td>
<td>Left</td>
<td>20 (46%)</td>
</tr>
</tbody>
</table>

Diaphragmatic Hernia

Morgagni (retrosternal) hernia

- X = xiphoid
- LC = large colon

Ventriculo-diaphragmatic herniation

- Direct suture: small rents
- Mesh herniorrhaphy: larger rents

Ultrasound

15yo TB Gelding, Colic

Radiograph

Ultrasound

Morgagni (retrosternal) hernia

- X = xiphoid
- LC = large colon

Ventriculo-diaphragmatic herniation

- Direct suture: small rents
- Mesh herniorrhaphy: larger rents

Ultrasound

15yo TB Gelding, Colic

Radiograph

Ultrasound

Diaphragmatic Hernia

DH: Treatment

- Medical and surgical
 - Medical to stabilize (pre-op and post-op)
 - Surgical to repair the rent a bowel

- Surgical
 - Ventral midline (most common) or lateral thoracotomy with rib resection
 - Direct suture: small ventral rents
 - Mesh herniorrhaphy: larger rents
 - Laparoscopy – standing
 - Small rents, dorsal location
 - All have a pneumothorax
 - Positive pressure ventilation during surgery
 - Evacuation of air/fluid intra-op and post-op (slow re-expansion)
Surgery 1
Reverse Trendelenburg
Remove air in recovery

Surgery 2: Rib Resection, Mesh Repair

Thoracotomy
Gigli wire for rib resection

DH: Prognosis
- Hart and Brown, J Vet Emerg Crit Care 2009
 - 18/44 euthanized; 26/44 taken to surgery
 - 17/26 surgical euthanized; 9/26 survived surgery; 7/9 were discharged
 - Overall survival 16%; 27% of all taken to surgery
- Romero and Rodgerson, Can Vet J 2010
 - 6/31 euthanized; 25/31 taken to surgery
 - Overall survival 23%; 46% of all taken to surgery

Rib Fractures: Neonates
- Common: ~70% of foals presenting to a NICU
- Related to birthing trauma
 - Intra-partum fracture
- Dystocia is a risk factor
- Usually at/near the costochondral junction of the ribs
- Predilection locations related to adjacent anatomy
- Consequences
 - Hemothorax, lung laceration, cardiac laceration, flail segment, respiratory distress
Diagnoses

- Palpation
- Radiography
- Ultrasound
 - Detects 4X the number of fractures vs radiography

TABLE 2: Sensitivity, specificity, negative and positive predictive values of thoracic palpation and visual dorsal midline midsagittal and radiography vs. ultrasonography. A foal was considered positive when ultrasonography or thoracic radiography identified rib fractures.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoracic palpation</td>
<td>82 (95/116)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
<tr>
<td>Dorsal visualization</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
<tr>
<td>LL radiographs</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
<tr>
<td>LLL radiographs</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
<tr>
<td>DV radiographs</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
<tr>
<td>Supradiaphragmatic</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
<tr>
<td>Ultrasonography</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
<td>82 (129/160)</td>
</tr>
</tbody>
</table>

NPV = negative predictive value, PPV = positive predictive value, LL = Left lateral projection, LLL = Left lateral diagonal, DB = Dorsal oblique plane.

Most foals had 2 fractured ribs

- **Left sided** bias
- Ribs 2 through 7 (4th rib most common) likely to be affected.

Flail Segment

- Three or more ribs fractured at 2 sites on each rib
- "Free floating segment with paradoxical movement"
 - Inward displacement during inspiration
 - Outward displacement during exhalation
- In humans, treatment is largely supportive including mechanical ventilation, analgesia
 - Surgery is rarely performed
- In horses, it occurs rarely in adults, more likely in foals and would likely be amenable and necessary to surgical stabilization.
Rib Fractures: Management

Conservative
- Exercise restriction and analgesia

Significant hemothorax
- Aminocaproic acid
- Oxygen
- Limited drainage ± autologous transfusion

* * * *

D 1 month old with depression and respiratory distress: hemothorax and multiple fractured ribs

Likely acute on chronic injury given the presence of callus formation

Rib Fractures: Surgical Management

Unstable, axially displaced and multiple ribs (i.e. flail segment)
- Reconstruction plate, self-tapping screws and cerclage
 - belleau et al, equine vet j 2004; 36:557-562
- Nylon suture and crimp technique
 - rosa et al, Vet Surg 2005;34:399-404
- Cable ties

Penetrating Injuries

- Penetrating injuries may include
 - Axillary wounds i.e. stake/stick wounds
 - Lateral chest wall wounds
 - Displaced open rib fractures
 - Gun shot

- Pneumothorax can be immediately life threatening
 - Open: IP pressure equilibrates to atmospheric
 - Closed: IP pressure equilibrates to atmospheric
 - Tension: IP pressure goes supra atmospheric
 - Wound that sucks air in but doesn’t allow air out (one-way flow)

Penetrating Wounds: Important structures to consider

Axillary Wounds

- Tend to cause pneumomediastinum → pneumothorax
- Subcutaneous emphysema is also very common

Wound Evaluation

- Careful palpation
 - Take care not to increase the depth of injury, particularly near the pleura, increase dirt, vital structures

- Radiography +/- fistulogram
 -Extent of lung/pleural space injury
 -Foreign bodies i.e. gun shot

- Flexible endoscopy in a large tract i.e. from a stick

- Ultrasound: concurrent hemothorax and pleural fluid accumulation
Subcutaneous emphysema

Chest/axillary wound

- Therapy
 - Clean, lavage with minimal debridement
 - Open: pack with saline soaked gauze/crypt packing and secure with tie-over bandage, temporary sutures
 - Limit horse movement and abduction of the limb
 - Can splint the leg, put on a wire
 - Allow most wounds to granulate
 - Primary healing for very clean, minimally contaminated or macerated tissue
 - +/- topical therapy on tissue i.e. neosporin, furacin
 - If pleura has been breached
 - See chest wall injury

Chest Wall Injury

- Triage
 - Cover/seal open wounds
 - Oxygen insufflation
 - Prepare caudodorsal site for thoracocentesis and drainage of air
 - They all have some degree of pneumothorax
- Treatment
 - Broad spectrum antibiotics
 - Anti-inflammatories/analgesia
 - Pleural and rib/intercostal pain!

Penetrating Injury

- Pleuropneumonia +/- abscesses are common
 - May require drainage, thoracotomy, intercostal myotomy
 - Long-term, broad spectrum antibiotics

Thoracotomy

Pleural evacuation

- Instrument: depends on the cause and likelihood of redevelopment (open vs closed)
 - Teat cannula
 - Catheter
 - Small gauge chest tube
- Location:
 - Caudal and dorsal
- Rate:
 - Slowly. Human Medicine recommendation is ≤ 20 cmH₂O
Long term or continuous drainage

- **Bottle 1** connects to the patient and collects secretions etc.
- **Bottle 2** = water seal
- **Bottle 3** determines the suction pressure applied to the airway based on the fluid height, i.e. X cm H₂O

Pneumothorax

- **Re-expansion pulmonary oedema**
 - Perhaps and ARDS-like phenomenon
 - Capillary endothelial fragility
 - Mechanical trauma (collapse and sudden re-opening)
 - Reperfusion injury?
 - Results in increased interstitial fluid and protein accumulation and hypoxemia (low PaO₃/FiO₂)
- Effects are minimized by slow, gradual air evacuation with low negative pressures

Pneumomediastinum

- No lung
- Thoracic aorta is easily visualized with a pneumomediastinum

Mediastinal air highlights mediastinal structures well (trachea, aorta etc)

Traumatic Hemothorax

- Intercostal vessels, pulmonary vessels, heart
- Presentation: anemia, pallor, respiratory distress (rapid, shallow), hemorrhagic shock
- Diagnosis: ultrasonography
- Confirmation: thoracocentesis

- To drain or not to drain?
 - Yes, if severely dyspneic
 - No, as increased pleural pressure may be providing hemostasis and the pleura is able to autotransfuse up to 75% of erythrocytes by 72 hours.
 - Half-way approach (what I do)
 - Provide some dyspnea relief, but don't remove all the blood.
 - Consider autologous transfusion back to the patient
 - 3.8% citrate in a 9:1 dilution
Post-traumatic ARDS/ALI

- Re-expansion pulmonary edema
- Based on strict ARDS definitions in people
 - PaO₂:FiO₂ decreased (< 200; certainly < 500 (n))
 - No LA dysfunction or increased PCWP
 - Pulmonary infiltrates
 - Acute onset of distress
- Cause of acute distress is likely multifactorial
 - Contusion, hemorrhage, collapse, atelectasis, relative surfactant deficiency, ARDS? etc

Pneumothorax, pneumomediastinum
- Pulmonary contusion
- Acute lung injury \(\rightarrow\) contusion, re-expansion injury?
 - PaO₂:FiO₂ < 300
 - Poorly O₂ responsive
- Responded well to continuous suction, O₂ support and antibiotics/analgesics

Closing

- Good review for further details

Thoracic Trauma in Horses

Kim A. Sprayberry, DVM**, Elizabeth J. Barrett, DVM, MS**

Questions?

Team ECC surgery: New Bolton Center