New Bolton Center Kennett Square, PA
Emergencies & Appointments:
Ryan Hospital Philadelphia, PA
  • Penn Vet Cancer Center
    The Penn Vet Cancer Center bridges the laboratory and the clinic for a collaborative approach to cancer’s biggest questions. The result is new dialogue and integrated frameworks that move toward one shared goal: the prevention and treatment of cancer in all species. Read More About The Penn Vet Cancer Center
  • Garden Immune Regulation Laboratory

    Dr. Oliver Garden, the Henry and Corinne R. Bower Professor of Medicine and Chair of the Department of Clinical Sciences & Advanced Medicine, is the principal investigator of the Garden Immune Regulation Laboratory at the School of Veterinary Medicine (Penn Vet).

    The Garden Immune Regulation Laboratory has expertise in two key areas: (1) the biology of regulatory cells of lymphoid and myeloid origin in the context of the cancer microenvironment and autoimmune disease, particularly myasthenia gravis, immune-mediated hemolytic anemia, and other immune-mediated diseases; and (2) the development of antigen-specific vaccinal immunotherapies for antibody-mediated autoimmune diseases, including myasthenia gravis and anti-N-methyl D-aspartate receptor encephalitis.  

    Previously a member of the Comparative Physiology and Medicine and Infection and Immunity research themes at the Royal Veterinary College (RVC), University of London, Oliver led the Oncology Special Interest Group (part of Comparative Physiology and Medicine) from 2012 to December 2016. He currently holds a Visiting Professorship at the RVC.

    Read More About The Garden Immune Regulation Laboratory
  • Miyadera Laboratory
    Miyadera Lab, ocular image

    We are interested in the genetic basis of hereditary ocular diseases in animals and people.

    By learning from our canine friends affected with the ocular diseases, we strive to to understanding the molecular mechanisms of the equivalent diseases affecting human patients.

    Our goal is to develop safe and effective therapies such as AAV gene therapy to prevent or reverse vision-loss in animals and people affected.


    Interested in Working With Us?

    Landing page_KM w dogs 250

    We are always seeking highly motivated students and scholars interested in investigating the genetics and therapeutics of inherited ocular diseases. Please contact Dr. Keiko Miyadera ( with your background and CV.

    Read More About The Miyadera Laboratory
  • Lennon Laboratory

    Lennon Lab Team 760Welcome to the Lennon Laboratory where we study Inflammatory Bowel Disease (IBD).

    We believe that by studying naturally occurring IBD in dogs and cats we can improve treatment for people and pets with this debilitating condition. 

    Interested in Working With Us?

    We are always seeking highly motivated students, post-doctoral fellows, or veterinarians who are interested in becoming involved in research.

    Read More About The Lennon Laboratory
  • van Eps Laminitis Laboratory

    Over the last decade, the members of the van Eps Laboratory have recognized key differences (and some similarities) in the initial events that lead to the three types of laminitis:

    1. Sepsis-related laminitis (SRL)
    2. Endocrinopathic laminitis (associated with insulin dysregulation/hyperinsulinemia)
    3. Supporting limb laminitis (SLL)

    A focus on these early events is leading to a better understanding of why laminitis occurs in different clinical situations and is helping to identify therapeutic targets.

    Our goal is to identify the key pathophysiological events that lead to different forms of laminitis in order to develop clinically applicable means of preventing this crippling equine disease. 

    Read More About The van Eps Laminitis Laboratory
  • Harty Laboratory

    At the Harty Laboratory, we focus our research on three main areas:

    1. The molecular dynamics and biological significance of virus-host interactions during late stages of RNA virus assembly and egress.
    2. The identification and development of host-oriented therapeutics as a new class of antiviral inhibitors.
    3. The interplay between the host innate immune response and RNA virus infection.

    Our model virus systems to interrogate these topics include:

    • Filoviruses (Ebola and Marburg viruses)
    • Arenaviruses (Lassa fever and Junín viruses)
    • Rhabdoviruses (VSV)
    • Retroviruses (HIV-1 and HTLV-1)
    Read More About The Harty Laboratory
  • PennGen

    The Section of Medical Genetics at the University of Pennsylvania's School of Veterinary Medicine has been in the forefront of reporting and characterizing hereditary diseases in companion animals for more than 40 years, including research to uncover the genetic basis and developing genetic tests for canine and feline diseases.

    PennGen is a genetic testing facility operated through the Section of Medical Genetics as a collection of not-for-profit laboratories offering testing for a variety of genetic diseases, metabolic screening for inborn errors of metabolism, hematological, and other diagnostic services. 

    Read More About The PennGen
  • Vaughan Laboratory

    Dr. Vaughan’s research is focused on defining and understanding the relevant cell types and molecular mechanisms by which the mammalian lung is able to regenerate after severe injury. He is especially interested in elucidating the means by which epithelial progenitors contribute to repaired airway and alveolar units after various lung insults (influenza, ARDS, fibrosis). His studies suggest that physiological lung function is in fact dictated by progenitor cell fate choices after injury.

    Dr. Vaughan and his group have developed a novel orthotopic cell transplantation assay which allows for the direct assessment of engraftment, proliferation, and differentiation potential of these stem cells. Further, he is actively investigating the roles of the Notch, Wnt, and BMP pathways in regulating the differentiation potential and fate of expanded progenitor cells post-injury.

    Dr. Vaughan is part of the CAMB (DSRB) graduate group, and is a member of the Penn Institute for Regenerative Medicine (IRM).

    Interested in Working in the Vaughan Lab?

    Dr. Vaughan is currently seeking new graduate students to join his laboratory team. He welcomes inquiries for potential rotations from incoming students. Contact Dr. Vaughan directly at

    Read More About The Vaughan Laboratory
  • Beiting Laboratory

    We study the biological basis of diseases caused by microbes -- whether it be a parasitic worm, a pathogenic bacterium, or a complex microbial community in the gut. Our group makes up the Center for Host-Microbial Interactions, at Penn Vet, and our research leverages a diverse skill set that cuts across the disciplines of genomics, microbiology and immunology. We engage in collaborative projects that benefit from close interactions with veterinarians and human clinicians alike. Our research embodies the idea of 'One-Health' - that humans, animals and the environment are interconnected, and that we all live in a microbial world. We are located at the The University of Pennsylvania, in The Department of Pathobiology at the School of Veterinary Medicine.

    Read More About The Beiting Laboratory
  • Striepen Laboratory

    Welcome to the Striepen lab

    We study the cell and molecular biology of parasites, and use our findings to develop new treatments. Most of our research is focused on Cryptosporidium and Toxoplasma, two protozoan parasites that threaten small children and those with weakened immune systems.

    For the latest updates on our research, please visit

    Read More About The Striepen Laboratory
  • Havemeyer Equine Behavior Research Lab

    Semi-feral pony herd at New Bolton Center

    The Equine Behavior Program and Laboratory at New Bolton Center has grown from within the Section of Reproductive Studies.  Since the early 1980s the program, has had research as its core activity.  The program has included involvement in related clinical and teaching in the veterinary school and continuing education programs nationally and internationally.  The initial research focus of the laboratory was on stallion reproductive physiology and behavior. 

    Early research concentrated on the physiology and pharmacology of libido, erection, and ejaculation, with immediate application to clinical problems in breeding stallions and with relevance to the understanding of human sexual dysfunction. 

    Another long-standing research interest of our laboratory has been the effects of experience on sexuHavemeyer Barnal function.  In the 1990s our research and clinical work expanded beyond stallions to include reproductive and general behavior problems of horses.

    The Behavior Lab is housed in The Havemeyer Barn at The Georgia and Philip Hofmann Center for Animal Reproduction. 

    Read More About The Havemeyer Equine Behavior Research Lab
  • Ortved Laboratory

    The Ortved Laboratory at New Bolton Center is focused on understanding the pathophysiology of post-traumatic osteoarthritis (PTOA) and developing gene and cell-based therapies to help regenerate cartilage and prevent the development of PTOA following joint injury.

    Due to the many similarities in joint biomechanics and propensity for PTOA, our lab uses the horse as a large animal model for human joint disease. Our goal is to develop translational regenerative therapies that would benefit both the equine and human patient.

    Lab Mission

    • To improve cartilage repair using stem cell and gene therapy.
    • To limit the long-term effects of joint trauma through gene therapy immunomodulation of the joint.
    • To further elucidate the pathogenesis of post-traumatic osteoarthritis (PTOA).

    Dr. Kyla Ortved, New Bolton Center

    Interested in Working With Us?

    We are always seeking highly motivated students and post-doctoral fellows with an interest in:

    • Orthopedic research
    • Joint disease
    • Stem cell therapy
    • Gene therapy
    • Regenerative medicine
    • Cartilage biology

    Contact: Dr. Kyla Ortved at

    Read More About The Ortved Laboratory
  • Kubin Laboratory

    Laboratory of Neurochemical Mechanisms of REM Sleep and Sleep-Related Respiratory Disorders

    We are interested in neural mechanisms of cardiorespiratory disorders during sleep associated with a common disorder known as the Obstructive Sleep Apnea (OSA) Syndrome. We also explore the basic mechanisms responsible for the generation of Rapid Eye Movement (REM) stage of sleep. Research is led by Dr. Leszek Kubin.

    Read More About The Kubin Laboratory
  • Wolfe Laboratory

    Welcome to the Wolfe Lab, supervised by John H. Wolfe, Professor of Pathology and Medical Genetics in Pediatrics and Director, Walter Flato Goodman Center for Comparative Medical Genetics.

     Description of Research 

    Our lab works on transferring disease correcting genes into the central nervous system (CNS) in animal models of human genetic diseases. In these diseases, the CNS is often not rescued by the therapies that help the rest of the body. The lab studies both ex vivo gene transfer into neural stem cells that are then transplanted and in vivo transfer using vectors injected directly into the brain.

    Our studies involve comparisons of both the vectors used to introduce the genes into cells and the properties of the genes themselves. Additionally, we examine the ability of different cell types and subregions of the brain to be corrected. We also pursue new methods to follow the corrected cells and the expression of the correcting gene in the live animal using MRI and PET techniques. For a complete understanding of the therapy, we also are working on achieving a better understanding of the mechanism of these diseases in the brain.


    Projects involve the molecular design and engineering of vectors, the understanding of the fate of vector-transferred genes in the brain, the regulation of gene expression from vectors, the biology of neural stem cell, the study of induced pluripotent stem cells (iPS), the use of imaging studies in genetic disease and gene therapy, and the proteomic and genomics analysis of the neurodegenerative brain. For students, projects can be tailored to interests, learning goals, and experience.

    Read More About The Wolfe Laboratory
  • Povelones Laboratory

    Research Interests


    Our main research interest is innate immune recognition and elimination of pathogens. Our work focuses on the interaction between mosquitoes and the animal and human pathogens they transmit. As the most species-rich group of animals on the planet occupying a vast array of ecological niches, insects are a fantastic example of the potency of innate defenses.

    PoveLab on TV and in the news:
    ★ The changing landscape of mosquito- and tick-borne diseases
    ★ News piece by Tom Avril in
    ★ TV spot by John McDevitt for CBS 3 Philly
    ★ See us on Xploration Awesome Planet "Insects" (Season 3 Episode 10)
    ★ View UPenn Spotlight on Our Work

    Rather than passive or willing carriers of pathogenic organism, mosquitoes are actually amazing pathogen killers. Taking mosquito interactions with malaria parasites as an example, the vast majority of the parasites ingested when a mosquito bites a malarious person are attacked and eliminated before they can mount an infection in the mosquito. It is the few parasites that survive (even one is sufficient), that are ultimately responsible for disease transmission. Similar interactions occur between mosquitoes and the other pathogens they transmit, like canine heartworm (Dirofilaria) and arboviruses (Zika, Dengue, Yellow Fever, West Nile, and Chikungunya).

    Arthropod vectors such as mosquitoes, sand flies and ticks are responsible for transmission of a large number of animal and human diseases worldwide. Studying these organisms may reveal general insights about innate immune defense mechanisms as well as provide novel avenues for controlling the terrible diseases they spread.

    Some of the questions we are addressing:

    • What is the basis of pathogen recognition by the mosquito innate immune system and how do some pathogens manage to escape?
    • What is the biochemical mechanism leading from innate recognition to pathogen killing?
    • How is mosquito complement regulated?
    • How does steroid hormone signaling regulate mosquito immunity?
    Read More About The Povelones Laboratory
  • Lengner Laboratory

    Our lab is broadly interested in the mechanisms by which stem cells acquire and maintain developmental potency. We are also exploring how deregulation of these mechanisms can contribute to oncogenic transformation, tumorigenesis, and tissue regeneration in response to injury, while looking forward to learn how we might manipulate these mechanisms for application in disease modeling and regenerative medicine.
    In the mammalian soma, tissue-specific stem cells capable of maintaining the proliferative output necessary for tissue organization and function exist in a state Lengner image 6 copyof multipotency (the ability to generate any cell type of that particular tissue, in contrast to the pluripotent state embodied by embryonic stem cells capable of generating all cell types of the mammalian organism). In highly proliferative tissues such as the epithelial lining of the intestine, data from our lab and others has begun to establish a model in the stem cell compartment is organized into a hierarchy, with a mostly dormant population of long-live, radio-resistant reserve stem cells at the top of this hierarchy. When activated, these reserve stem cells give rise to a second, highly proliferative, radiosensitive short-term stem cell that bears the daily proliferative burden required to maintain tissue homeostasis.  
    Our lab is focused on understanding the relationship between these two stem cell populations, the molecular determinants of reserve intestinal stem cell activation, and how deregulation of the reserve intestinal stem cell compartment contributes to disease states such as colorectal cancer or acute gastrointestinal radiation injury.
    We have recently identified the Msi family of RNA binding proteins as potent oncoproteins in both hematopoietic and intestinal malignancies. Msi proteins are expressed in putative somatic Lengner image 8 copystem cell compartments, are frequently found to be overexpressed in advanced cancers, and are known to govern asymmetric cell division in Drosophila melanogaster (a process thought to maintain the somatic stem cell niche in mammals). Using mouse genetic approaches integrated with human patient data, we have recently demonstrated that MSI2 acts as an intestinal oncogene, driving activation of the mTORC1 complex and uncontrolled stem cell expansion. We are currently pursuing the role of Msi proteins in epithelial stem cell compartments using tissue-specific gene ablation and drug-inducible gene activation. The effects of Msi proteins on stem cell maintenance and oncogenic transformation are being tied to their RNA binding capacity using CLIP-Seq analysis (immunoprecipitation of Msi-interacting RNAs followed by massively parallel sequencing) in order to determine how specific Msi-RNA interactions affect stem cell self-renewal and oncogenic transformation.
    While murine genetic systems are the primary tool of the laboratory, we also work to model human genetic gastrointestinal disorders using induced pluripotent stem (iPS) cells generated from patients. Generation of isogenic diseased and disease-allele corrected iPS cell lines using nuclease-mediated homologous recombination followed by directed differentiation into intestinal tissue provides a controlled platform not only for studying the molecular mechanisms underlying  

    Photos above: Label retaining cells of the intestinal crypts are identified by loading all cells with a Histone H2B protein fused to a green fluorescent protein (left). Several weeks later, only cells that do not divide retain the fluorescent label in their chromatin.

    A glimpse of the rare reserve intestinal stem cell (red).   This cell is capable of regenerating the entire intestinal lining after injury such as exposure to high doses of radiation. Read More About The Lengner Laboratory
  • Galantino-Homer Laminitis Laboratory
    LDD Gross Composite

    Laminitis is a common and debilitating disease that affects the folded and interdigitating tissues, called the lamellae, which connect the hoof wall to the underlying tissues of the horse’s foot. The lamellae normally allow the transfer of the horse's weight from the skeletal elements of the digit to the hoof wall.

    Dr. Galantino-Homer founded the Laminitis Laboratory at New Bolton Center in 2008. The Laminitis Laboratory was formed in part due to the tragic loss of the 2006 Kentucky Derby winner, Barbaro, to laminitis in January, 2007.

    Our goal is to employ cell and molecular biology methods to better understand laminitis pathogenesis in order to improve the prevention, diagnosis, and treatment of this disease.

    Our studies include the investigation of laminitis pathogenesis using protein biochemistry, gene expression, and histological analysis, identification of diagnostic serum biomarkers for laminitis, characterization of the keratin proteins that determine the mechanical properties of the hoof lamellae and the effect of laminitis on keratins and associated cell adhesion proteins, the impact of cell stress pathways on laminitis, characterization of the epidermal stem cell population in the lamellae, and establishing an in vitro culture system for equine hoof epidermal cells to minimize the use of live horses for laminitis research.

    Learn About Our Work

    From the Laminitis Discovery Database (LDD) to ongoing, collaborative research studies, the Galantino-Homer Laminitis Laboratory has focused on this all too common disease for more than two decades. Learn more about our work. Explore what we do.

    Read More About The Galantino-Homer Laminitis Laboratory
  • Sunyer Laboratory

    Sunyer nature fig 1 The studies of Dr. Sunyer's lab focus on basic and applied aspects of the fish immune system. Moreover, as teleost fish represent the most ancient living bony species with an immunoglobulin-based adaptive immune system, we use these species to study key aspects of the evolution of sunyer JLB fig 2adaptive immunity. Our main animal model is Rainbow trout.  While earlier work focused on investigating the structure, function and evolution of fish complement  (see below refs# 1-7), during the last 7 years our studies have mainly focused on B cells and mucosal immunity aspects of teleost fish.

    Read More About The Sunyer Laboratory
  • Center for Host-Microbial Interactions

     Center for Host Microbe InteractionsThe Penn Vet Center for Host-Microbial Interactions (CHMI) formed in 2013 as an interdisciplinary center that helps faculty leverage cutting-edge genomic approaches to understand how microbes (viruses, bacteria and parasites) influence animal health and disease. These so-called ‘host-microbial interactions’ represent an ongoing evolutionary arms-race between mammals and the microbial world we live in. 

    Most people are familiar with well-known viral infections caused by influenza, ebola; or bacterial infections caused by Salmonella or E. coli.  In each case, these pathogens can spread from animals to people, highlighting the notion that humans, animals, and our environment are inextricably connected by infectious diseases — a concept termed ‘One-Health’. 

    In the past few years it has become increasingly clear that just as there are microbes that cause disease, there are also beneficial microbes that are crucial in maintaining health.  Beneficial bacteria colonize our gut, skin and urogenital tract at birth and these complex microbial communities - termed a microbiome - develop just as our organ systems develop.  

    Researchers at Penn Vet, with assistance from CHMI, are actively studying the role of these the microbiome in animal diseases ranging from atopic dermatitis, inflammatory bowel disease, to mental health.

    Our mission is to better understand and treat disease through the study of microbes and the diverse ways animals respond to viruses, bacteria and parasites.

    Our Goals:

    • Establish an internationally recognized center that is the first of its kind at veterinary schools
    • Engage the broader Penn Vet community in host-microbial research that leverages ‘omic approaches
    • Develop stronger ties across schools at UPenn
    • Leverage spontaneous animal models of disease commonly seen at the Penn Vet Ryan Hospital
    • Establish a convenient ‘in-house’ solution for Penn Vet labs to analyze complex data sets that result from systematic studies of gene expression, microbial whole-genome sequencing, and the composition of microbial communities living on animals.
    Read More About The Center for Host-Microbial Interactions
  • Dou Laboratory

    Nitrogen, Phosphorus, and Integrated Management

    Nitrogen and phosphorus are essential nutrients for growing plants and animals. Insufficient nutrients diminish yields; excessive applications translate to wasted resources and environmental pollution. The work of Dr. Dou’s group features an integrated system nutrient management approach, coupling nutrient optimization in animal feeding with manure management and targeted nutrient application to crops for enhanced production efficiency and reduced environmental footprint.

    • Please see relevant projects and publications in 'Research Projects' and 'Publications' tab below.

    Integrated whole farm management based on nutrients (pathogen) flow pathway


    Whole Farm Management 

    Pathogens, Antimicrobial Resistance (AMR), and Livestock Farming 

    Livestock animals are important reservoirs of zoonotic pathogens as well as antimicrobial resistant determinants (antibiotic residues, AMR microbes, and AMR genes).  What happens to these “microbial pollutants” in the post-shed environment? How long do they survive under different management conditions? What is their distribution pattern in the intrinsically linked farming sectors and the dissemination pathways to the broader terrestrial and aquatic ecosystems? What intervention may help mitigate relevant risks associated with animal farming concerning food safety and public health? The research of Dr. Dou’s group addresses some of these critical issues.

    • Please see relevant projects and publications in 'Research Projects' and 'Publications' tab below.

    Food Waste, Food Security, and Sustainability

    Sustainable food security is an issue that intersects many of the contemporary challenges the world is struggling to deal with today, e.g. water scarcity, water pollution, resource limitation, land degradation, habitat and biodiversity loss, climate change, and hunger and poverty.  Dr. Dou collaborates with national and international experts to examine sustainable food security issues from multiple dimensions, such as food waste reduction and reuse, engaging, and empowering smallholder farmers, etc. 

    • Please see relevant projects and publications in 'Research Projects' and 'Publications' tab below.
    Read More About The Dou Laboratory