Research Interests
Epigenetics in reproduction, spermatogonial stem cell self-renewal, silencing of transposable elements, piRNA biogenesis, m6A RNA modification, regulation of meiosis, DNA recombination, chromosome segregation, DNA double-strand break repair, chromosome synapsis, male infertility in humans.
Key words: meiosis, piRNA, homologous recombination, synaptonemal complex, spermatogonial stem cell, and male infertility
Wang Lab website
https://www.vet.upenn.edu/wang
Description of Research
Our group focuses on the study of meiosis and spermatogonial stem cells. Meiosis, a cell division unique to germ cells, allows the reciprocal exchange of genetic material between paternal and maternal genomes. Meiosis generates the genetic diversity necessary for evolution of species. Abnormality in meiosis is a leading cause of birth defects and infertility. Spermatogonial stem cells are the adult male germline stem cells and responsible for life-long production of sperm. Our research interests include molecular genetics of chromosomal synapsis, DNA double-strand break repair, homologous recombination, self-renewal of spermatogonial stem cells, genetic causes of male infertility in humans, and piRNA biogenesis. Functional characterization of a number of new genes in our laboratory has uncovered novel regulatory mechanisms underlying key biological processes unique to germ cells. On one hand, our studies provide molecular insights into the development of germ cells in mice. On the other hand, these mouse studies have important implications for understanding the genetic causes of male infertility in humans and developing novel male contraceptives.
Epigenetic control of spermatogonial stem cells
Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. We have discovered that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.
Biogenesis and function of piRNAs
Piwi-interacting RNAs are a diverse class of small non-coding RNAs implicated in the silencing of transposable elements and the safeguarding of genome integrity. In mammals, male germ cells express two genetically and developmentally distinct populations of piRNAs at the pre-pachytene and pachytene stages of meiosis, respectively. Pre-pachytene piRNAs are mostly derived from retrotransposons and required for their silencing. In contrast, pachytene piRNAs originate from about one hundred genomic clusters and their biogenesis and function remain enigmatic. We previously reported that MOV10L1 is required for biogenesis of pre-pachytene piRNAs. Subsequently we have demonstrated that conditional inactivation of the putative RNA helicase MOV10L1 in mouse spermatocytes produces a specific loss of pachytene piRNAs, significant accumulation of pachytene piRNA precursor transcripts, and unusual polar conglomeration of Piwi proteins with mitochondria. Pachytene piRNA-deficient spermatocytes progress through meiosis without derepression of LINE1 retrotransposons, but become arrested at the post-meiotic round spermatid stage with massive DNA damage. Our results demonstrate that MOV10L1 acts upstream of Piwi proteins in the primary processing of pachytene piRNAs and suggest that, distinct from pre-pachytene piRNAs, pachytene piRNAs fulfill a unique function in maintaining post-meiotic genome integrity. Our studies have demonstrated that MOV10L1 is a master regulator of the piRNA pathway in mammals.
Recently we have shown that MOV10L1 exhibits 5'-to-3' directional RNA-unwinding activity in vitro and that a point mutation that abolishes this activity causes a failure in primary piRNA biogenesis in vivo. We demonstrate that MOV10L1 selectively binds piRNA precursor transcripts and is essential for the generation of intermediate piRNA processing fragments that are subsequently loaded to Piwi proteins. Multiple analyses suggest an intimate coupling of piRNA precursor processing with elements of local secondary structures such as G quadruplexes. Our results support a model in which MOV10L1 RNA helicase activity promotes unwinding and funneling of the single-stranded piRNA precursor transcripts to the endonuclease that catalyzes the first cleavage step of piRNA processing.
The X chromosome and Male Infertility
We have identified TEX11 as the first X chromosome-encoded meiosis-specific factor in mammals. In principle, meiosis-specific genes could be located anywhere in the genome. However, no mouse sex chromosome-linked mutants with meiosis-specific defects had been reported, leading to the perception that meiosis-specific factors are rarely if ever encoded by the sex chromosomes. We were the first to clone Tex11, an X-linked germ cell-specific gene. By ablating the function of Tex11 in mice, we have demonstrated that Tex11 is essential for meiosis and fertility in males. Our findings have important implications for male infertility in humans, which accounts for about half of the cases of infertility among couples. An estimated 15% of couples are affected by infertility worldwide. Genetic screening of a large cohort of idiopathic infertile men reveals that TEX11 mutations, including frameshift and splicing acceptor site mutations, cause infertility in 1% of azoospermic men. Collectively, our studies demonstrated that the X chromosome plays a disproportionately eminent role in male fertility, challenging the dogma that the X chromosome is a female chromosome. Furthermore, we find that TEX11 protein levels modulate genome-wide recombination rates in both sexes. These studies indicate that TEX11 alleles affecting expression level or substituting single amino acids may contribute to variations in recombination rates between sexes and among individuals in humans.
Regulation of Homologous Recombination
During meiosis, homologous chromosomes undergo synapsis and recombination. The arrangement of homologous chromosomes is tightly regulated by the synaptonemal complex (SC). SYCP2 is an integral component of SCs in mammals. Our genetic and cell biological studies demonstrate that SYCP2 is required for the formation of SCs and chromosomal synapsis (Yang et al., J Cell Biol 2006). We also find that TEX11 interacts with SYCP2 and is a novel constituent of meiotic nodules involved in recombination. TEX11 promotes both synapsis and recombination, and thus may provide a physical link between these two fundamental meiotic processes.
We performed a genome-wide proteomics screen and identified 51 knonwn and putative meiotic chromatin-associated proteins (Luo et al., Nature Commun 2013). We have functionally characterized two of these proteins - MEIOB and SCML2. MEIOB forms a complex with RPA and SPATA22 and is essential for meiotic recombination. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis (Luo et al., PLoS Genetics 2015). We plan to elucidate the role of the novel meiosis-specific factors in the regulation of meiotic chromatin dynamics.
For rotation projects and postdoctoral positions, please contact Jeremy Wang.
Lab personnel:
Fang Yang, senior scientist
Zhenlong Kang, postdoctoral fellow
Ankit Jaiswal, postdoctoral fellow
Yiyun Zhang, graduate student
Cong Liu, graduate student
Maya Kennedy, undergraduate student
Lin H, Cheng K, Kubota H, Lan Y, Riedel SS, Kakiuchi K, Sasaki K, Bernt KM, Bartolomei MS, Luo M, and Wang PJ. Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells Genes & Development Published online in advance: , 2022.Guan Y, Lin H, Leu NA, Ruthel G, Fuchs SY, Busino L, Luo M, and Wang PJ SCF ubiquitin E3 ligase regulates meiotic DNA double-strand breaks in early meiotic recombination Nucleic Acids Research 50: 5129-5144, 2022.Guan, Y and Wang, PJ. Golden opportunity for piRNA in female fertility Nature Cell Biology 23: 936-938, 2021.Liu R, Kasowitz SD, Homolka D, Leu NA, Shaked JT, Ruthel G, Jain D, Keeny S, Luo M, Pillai RS, and Wang PJ YTHDC2 is essential for pachytene progression and prevents aberrant microtubule-driven telomere clustering in male meiosis Cell Reports 37: 110110, 2021.Yang F, Lan Y, Pandey RR, Homolka D, Berger SL, Pillai RS, Bartolomei MS and Wang PJ. TEX15 associates with MILI and silences transposable elements in male germ cells. Genes & Dev. 34: 745-750, 2020.Guan Y, Leu NA, Ma J, Chamatal L, Ruthel G, Bloom JC, Lampson MA, Schimenti JC, Luo M, Wang PJ. SKP1 drives the prophase I to metaphase I phase transition during male meiosis Science Advances 6: eaaz2129, 2020.Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z, and Wang PJ. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. [PMID 25762440] Genes & Development 29: 603-616, 2015.Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, Brown LG, Rozen S, Page DC, Wang PJ. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse.[PMID 26136358] EMBO Mol Med 7: 1198-1210, 2015.Luo M, Yang F, Leu NA, Landaiche J, Handel MA, Benavente R, La Salle S, Wang PJ. MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination.[PMID 24240703] Nature Communications 18: 2788, 2013.Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA, McLaughlin KJ, Stark A, Sachidanandam R, Pillai RS, and Wang PJ. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway.[PMID 20534472] PNAS 107: 11841-11846, 2010.
MD (Basic Medicine) Peking University Health Science Center, 1990PhD (Molecular Biology and Genetics) Cornell University, 1997
Whitehead Institute/M.I.T. (1997 to 2002)
Postdoctoral fellow