• Avadhani Laboratory
    The research in Dr. Avadhani's laboratory is focused on the following aspects of mitochondrial genetics and regulation of mitochondrial membrane biogenesis in mammalian cells:

    1. Mechanisms of dual targeting of cytochrome P450 and related proteins to ER and mitochondria and mechanisms of activation of the chimeric N-terminal signal by cAMP and other physiological factors. 

    2. Characterization of a novel mitochondria-to-nucleus stress signaling in cells subjected to mitochondrial specific genetic, and or, metabolic stress, which operates through altered [Ca2+]c, and the role of mitochondrial stress signaling in tumor progression and metastasis.

    3. Regulation of cytochrome oxidase gene expression, and modulation of enzyme assembly/activity under chemical and oxidative stress conditions. 

    4. Role of mitochondrial stress signaling in Embryonic Stem Cell function/differentiation, and mammalian mitochondrial transcription under chemical and oxidative stress in ES cells.
    Read More About The Avadhani Laboratory
  • Reference Andrology Laboratory

    The Reference Andrology Laboratory provides complete testing of neat, cooled and frozen-thawed semen from mammalian and avian species. The primary purpose of these services is to aid practitioners in their differential diagnosis of individual/herd/flock reproductive problems.

    These services are also frequently used by practitioners and studs as a third-party quality control component in an ongoing stud auditing process.

    The laboratory strives to perform objective, validated techniques for assessing samples for the basic spermiogram parameters of sample volume, motility, morphology, and concentration. With advanced notification, we will also try to accommodate requests for supplemental assessment techniques on sperm subcellular structures. We also offer semen extender analysis and microbiological testing of the extended semen product and purified water used in extenders.

    Read More About The Reference Andrology Laboratory
  • Bale Laboratory

    Our research focuses on developing mouse models of stress sensitivity related to neurodevelopmental and neuropsychiatric disease. We utilize genetic and prenatal manipulations to elucidate mechanisms contributing to disease predisposition.

    We have focused on utilizing approaches that range from fetal antecedents in programming of long-term disease risk to genetic targeting of cell type specific knockout mice.

    We have focused on developing models of disease including affective disorders and obesity utilizing approaches that range from fetal antecedents, involved in programming of long-term disease risk, to genetic targeting of cell type specific knockouts.

    We have initiated multiple lines of investigation that will provide insight into the timing and sex specificity of early life events promoting disease susceptibility, the maturation of central pathways during key periods of development, and the epigenetic mechanisms involved in long-term effects following stress exposure.

     

    Read More About The Bale Laboratory
  • Vite Laboratory

    The focus of the Vite lab is to improve the characterization and treatment of neurological Niemann-Pick Disease, Penn Vet, Vite Laboratorydiseases by studying naturally-occurring feline and canine models of human diseases.

    Our lab develops and identifies ante-mortem biochemical and nuclear magnetic resonance markers of disease severity and progression and uses these markers to evaluate the efficacy of gene therapy, cell-based therapy, and pharmacotherapy to treat disease. 

    Read More About The Vite Laboratory
  • Scott Laboratory

    Dr. Scott's current research is focused on understanding the development, regulation and maintenance of CD4+ and CD8+ T cells in order to design new vaccines and immunotherapies for infectioleishmaniaus diseases.

    The laboratory primarily focuses on experimental murine infections with the protozoan parasite, Leishmania, which provides a well-characterized model of T helper cell differentiation.

    Read More About The Scott Laboratory
  • Mason Immunotherapy Research Laboratory

    Dr. Mason's lab currently focuses on immunotherapy approaches to treat osteosarcoma, hemangiosarcoma, and lymphoma, among other cancers. 

    Visit Mason Immunotherapy Research...

    Read More About The Mason Immunotherapy Research Laboratory
  • Volk Laboratory
    extracellular-matrix-protein

    The goals of the Volk laboratory are to understand regulatory mechanisms governing dynamic interactions between cells and their surrounding extracellular matrix in the wound healing-fibrosis-cancer progression triad and to apply this knowledge to develop innovative regenerative and oncologic therapies for veterinary and human patients.

    Read More About The Volk Laboratory
  • Hunter Laboratory

    T gondii in the retina, Hunter Lab

    Dr. Christopher Hunter's research team has been working on various aspects of basic parasitology since 1984.

    For nearly 25 years, Dr. Hunter's team has focused on understanding how the immune response to Toxoplasma gondii is regulated to allow the development of protective immunity as well as to limit T cell mediated pathology in multiple sites including the gut and brain.

    Read More About The Hunter Laboratory
  • ASMG Laboratory - Microbial Genomics

    asmg-lab-new-bolton-center 500

    The Agricultural Systems and Microbial Genomics Laboratory (ASMG Laboratory) was established to support Dr. Dou and Dr. Pitta in their research endeavors.

    Dr. Pitta is the ruminant nutrition and microbiologist at the Center for Animal Health and Productivity (CAHP), New Bolton Center, University of Pennsylvania.

    Microbial Genomics

    Research in the Microbial Genomics section of the ASMG lab focuses primarily on the gut microbial composition of ruminants, utilizing both culture-based and advanced molecular methodologies. The alimentary tract of a ruminant is colonized by millions of microbes living in a symbiotic relationship with the host. Therefore, knowledge of the microbial composition of the entire gut can provide insights into improving the overall health and productivity of the animal.

    Microbiology Component

    new-bolton-center-asmg-lab-microbial-genomics 400The recent advent of next generation sequencers has greatly enhanced the ability to explore community microbial populations. The ASMG lab has the capabilities to perform metagenomic studies including sample preparation, genomic DNA extraction and generating 16S amplicon libraries for sequencing on next generation platforms. The sequenced data is analyzed at the ASMG laboratory utilizing the appropriate bioinformatics tools for data interpretation. The lab is in the process of streamlining the protocols for generating 18S libraries for protozoa and fungal communities.

     

    Read More About The ASMG Laboratory - Microbial Genomics